

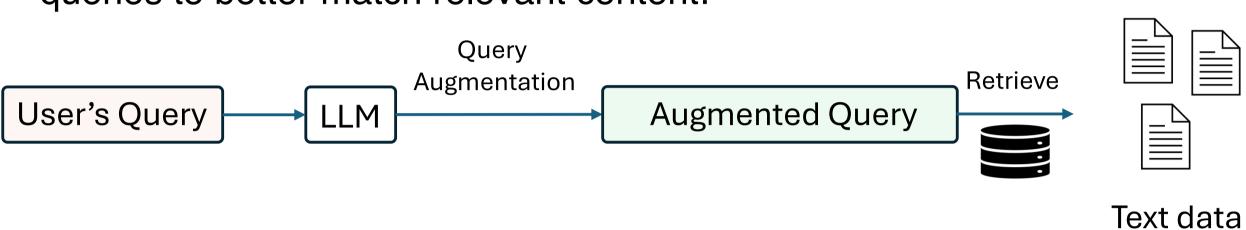
DeepRetrieval: Hacking Real Search Engines and Retrievers with LLMs via RL

The First Search Agent Trained with On-Policy RL

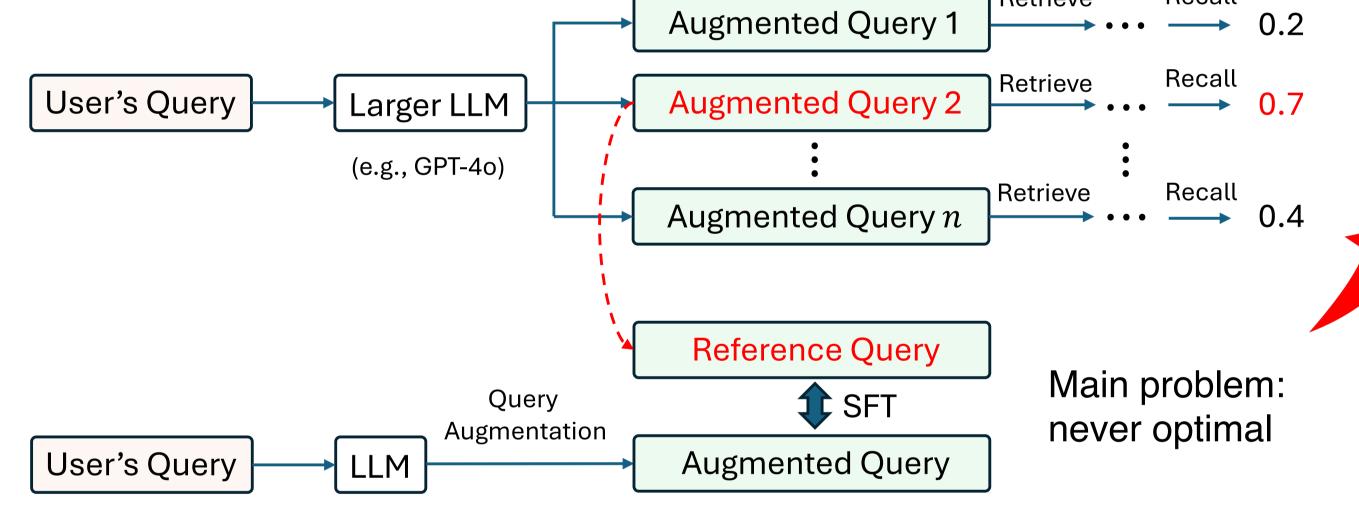
Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian, SeongKu Kang, Zifeng Wang, Jimeng Sun, and Jiawei Han

Background

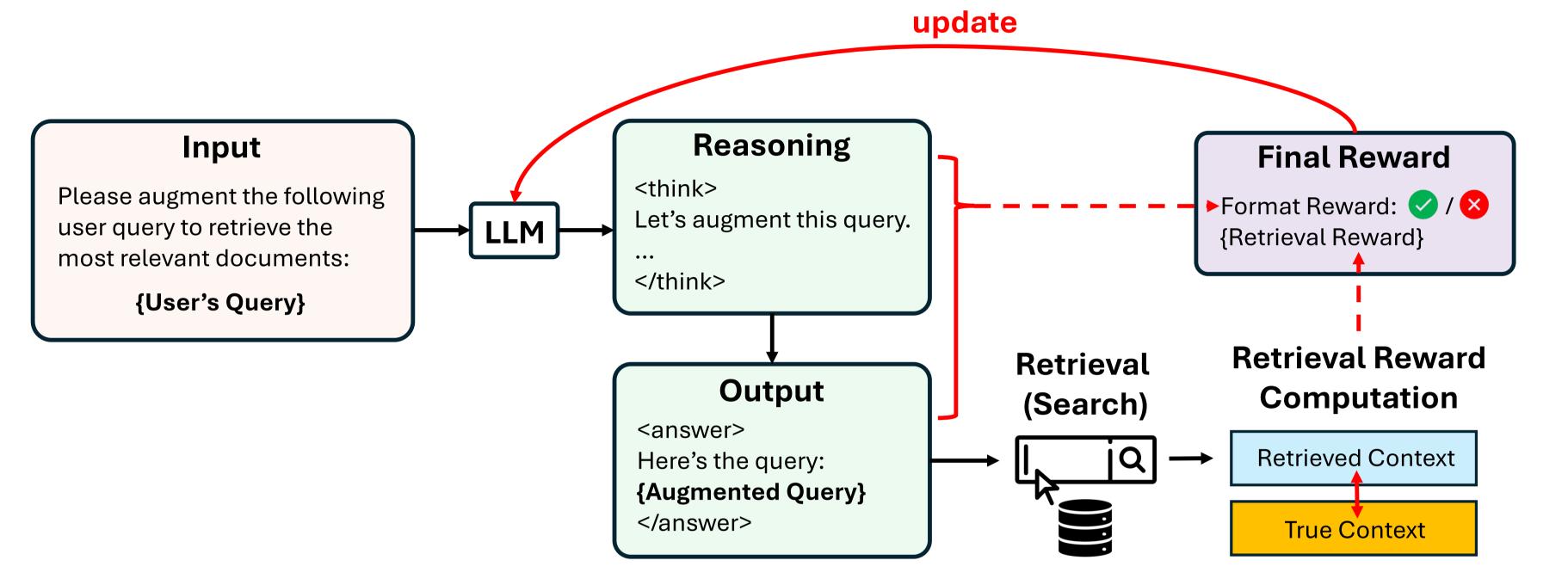
- Information retrieval systems often struggle with the semantic gap between user queries and relevant documents.
- Query Augmentation/Rewriting bridges this gap by reformulating queries to better match relevant content:



Previous Approaches (Distillation from Larger LLMs):



DeepRetrieval Framework



We introduce **DeepRetrieval**

DeepRetrieval discovers optimal query patterns through direct interaction with retrieval systems

Reward Optimization:

- Format reward ensures adherence to required output structure
- Retrieval reward directly measures search effectiveness (recall, NDCG, etc.)

Why RL >> SFT for Retrieval?

- **Direct Optimization**: RL optimizes retrieval metrics directly rather than mimicking reference queries
- Exploration Advantage: RL explores query space through trial-and-error, discovering patterns human experts might

For example (search PubMed):

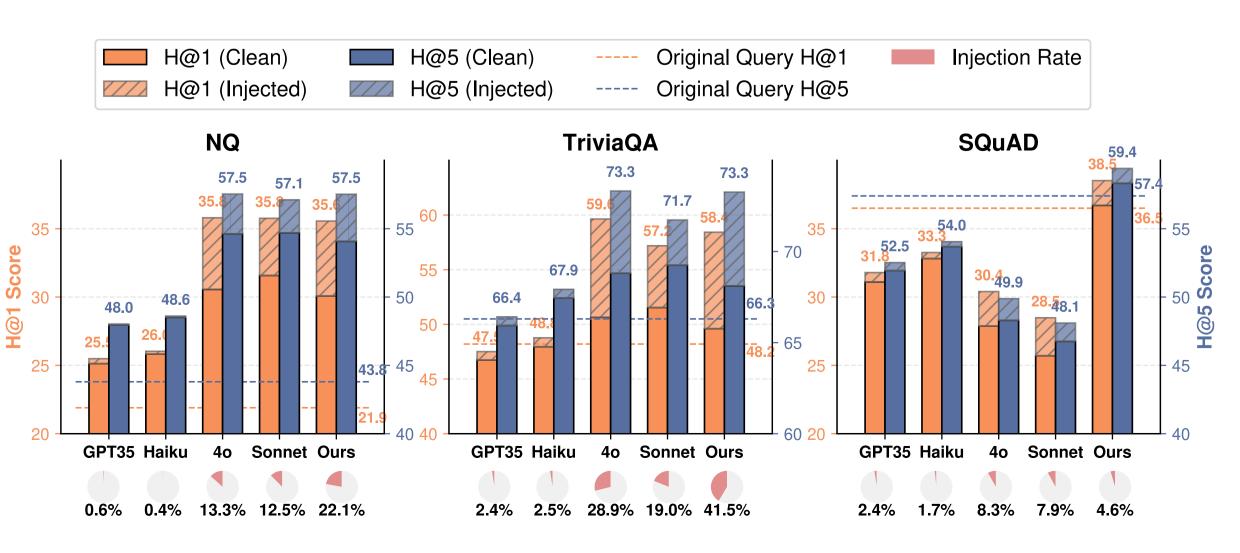
((Total Knee Arthroplasty Trial OR Total Knee Arthroplasty Surgery) AND (Drainage OR Antibiotics Trial OR Surgical Drainage Trial OR Postoperative Drains Trial))

Task Adaptability: RL performs consistently well across scenarios with varying levels of ground truth availability

They are also complementary: SFT can provide strong initialization for RL when reference query is truly golden (see "w/ cold start" in "Task: SQL Search")

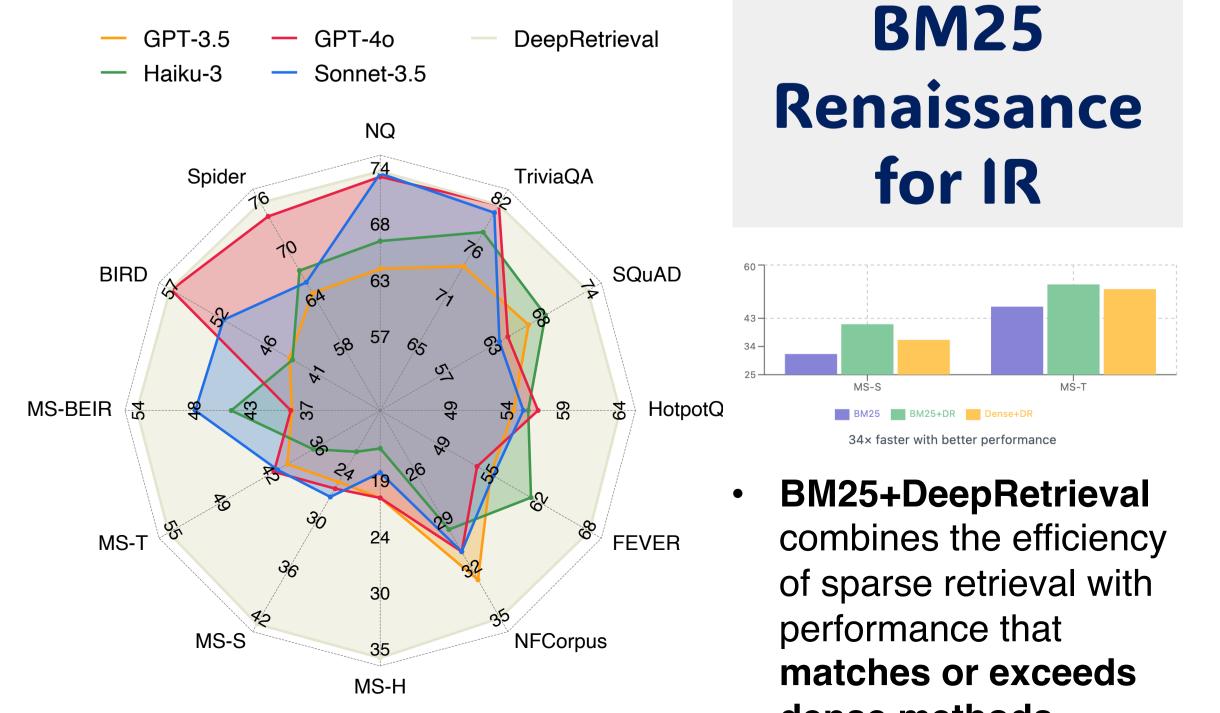
Task: QA Retrieval

Evidence-Seeking (QA) Retrieval: Given a question, looking for the answer span in the retrieved documents. Measured by Hits@N. The shadowed barchart and piechart shows the performance gain by knowledge injection and injection ratio.

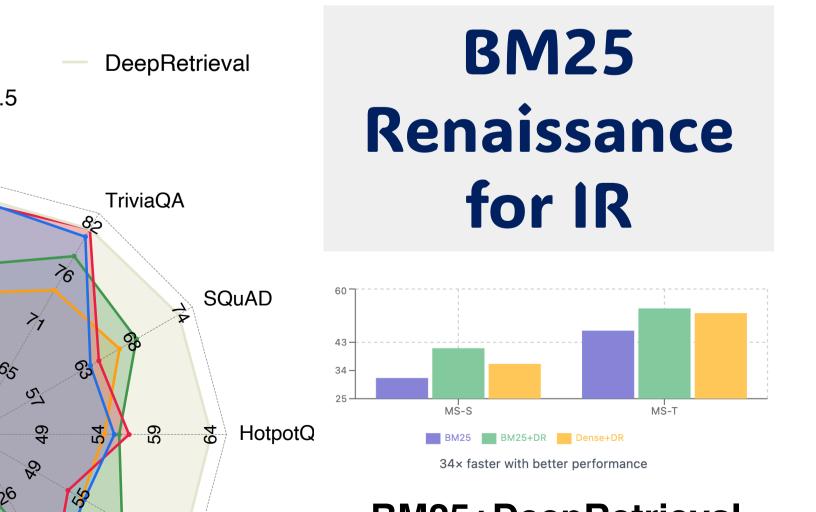


Task: Classic IR

Classic Sparse/Dense Text Retrieval: Query rewriting and retrieve text from corpus using BM25 / dense retriever. Metric: NDCG@10.

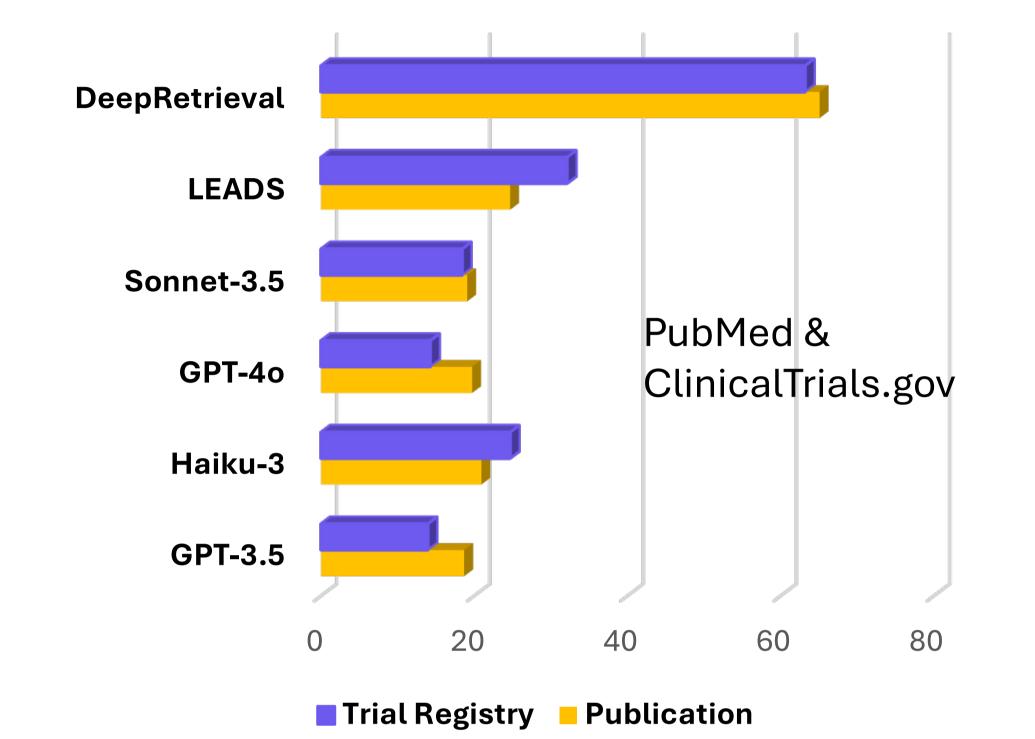


DeepRetrieval-3B ahieves comparable performance to GPT-4o/Claude-3.5 on NQ and TriviaQA, and outperfroms them on SQuAD.



dense methods.

Task: Real Search Engines

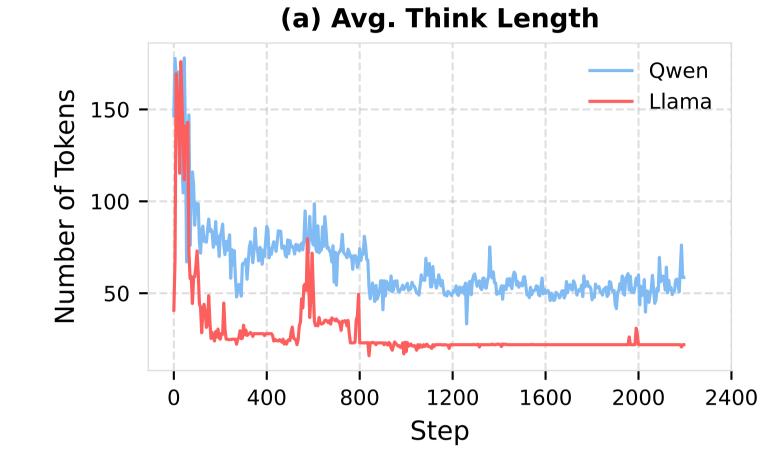


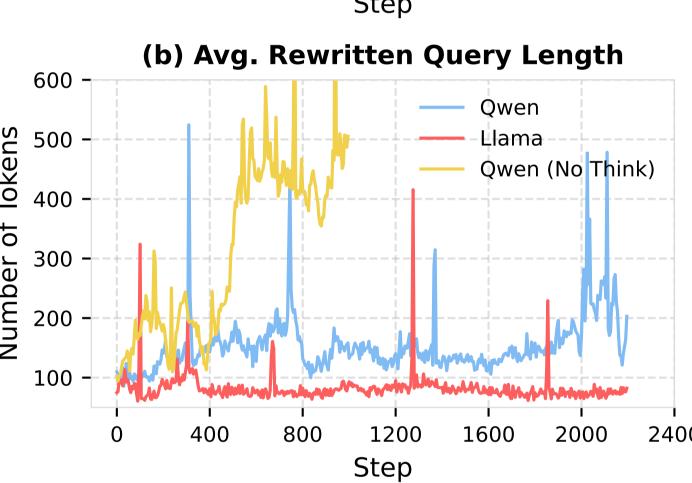
DeepRetrieval-3B's 65.07% vs. Previous SOTA (SFT)'s 24.68%

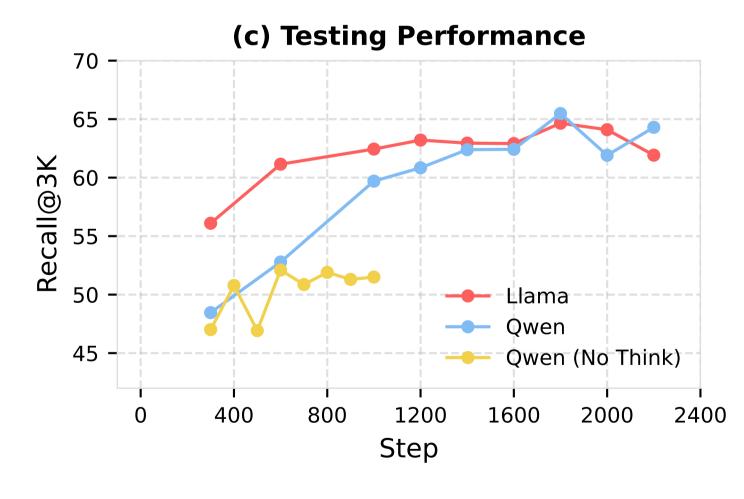
Task: (Text2)SQL Search

Methods	BIRD	Spider
Zero-shot (w/ reasoning)		
GPT-3.5	44.07	64.88
GPT-4o	55.93	73.40
Claude-3-Haiku	43.81	67.44
Claude-3.5-Sonnet	50.65	66.05
Qwen2.5 _{3B-Inst}	30.83	55.13
Qwen2.5-Coder _{3B-Inst}	33.57	54.45
Qwen2.5-Coder _{7B-Inst}	45.57	67.70
SFT		
Qwen2.5 _{3B-Inst}	33.77	56.67
Qwen2.5-Coder _{3B-Inst}	39.77	58.61
Qwen2.5-Coder _{7B-Inst}	44.07	65.96
Ours		
DeepRetrieval _{3B-Base}	41.40	68.79
w/ cold start	44.00	70.33
w/o reasoning	39.57	70.24
DeepRetrieval _{3B-Coder}	49.02	74.85
w/ cold start	50.52	74.34
w/o reasoning	47.00	73.59
DeepRetrieval _{7B-Coder}	56.00	76.01

Think/Query Length Study







Reasoning Evolution: Unlike tasks requiring long reasoning chains, reasoning length decreases over time as models *internalize* effective strategies

Without Reasoning: Models fall into local minima of query verbosity (yellow line) with lower performance (~52% vs ~65% recall)

Key Finding: Thinking phase is crucial for exploration during training but becomes more efficient as model learns optimal patterns